
UNCLASSIFIED r ' ' T I 'AG
SECUR!TT CLASSIFICATION OF THIS PAGE M, E-.teed)* a.I"N-

REPORT DOCUMENTAT1ON PAGE 3M ,STUWC ONS,

1. REPORT NUMBELA 2. GOV7 ACCESSION 60. 3. RECIPILNT'S CATALOG NUMBER

4. TITLE (SnmSubt'te) 6. TYPE Of REPORT 9 PERIOD COVERED

Ada Compiler Validation Summary Report: DDC, Inc 24 March 1989 - 1 Dec 1990
DACS-80186, Version 4.3, MicroVAX II (host) to Intel 6 PERFORtINGIDR. REOR NUMBER

80186 :SBC 186/03A (target), 890324SI.10067

7. AUbOORa) 8. CONTRACT OR &RAN NUMEERis)

National Bureau of Standards,

Gaithersburg, Maryland, USA

0. PERFORMING ORGANIZATION AP) ADDRESS 10. PROGRAM ELEME%1. PRr2ECI. TASK
AREA & VORK UNIT NUMBERS

National Bureau of Standards,

Gaithersburg, Maryland, USA

11. CONTROLLING OFFICE NAME AND APDRESS 1?. REPORT
Ada Joint Program Office
United States Department of Defense 13. Ut riktb

Washington, DC 2V301-3081

14. MONITORING AGENCY NAME & ADDRSS(lf different from Conrohg Office) 15. SECUiRIT CLASS (o'fhisreport)

ational Bureau of Standards, UNCLASSIFIED

Tm aithersburg, Maryland, USA Du S$1CTIN/AOh":RD1NGIf) N/A

. DISTRIBUTION STATEMENT (ofthisReport)

() kipproved for public release; distribution unlimited.

DISTRIBUJT ION STAIEVEN (of the absTract enitered in Blockc 20 lfd~feremT from, Rport DI
JNCLASSIFIED ELECTE

MAY 3 0 1989

SUPPEMENtAR) NOTES

19. KEYWDRDS (Continue on reverie soe ifneresar) aridentf) by block number)

Ada Prograorning language, Ada Compiler Validation Summary Repcrt, Ada
Compiler Validation Cap3bility, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABST RACT (Continue on reverse side if necessary and tdentify by block number)

DAC-S-80186, Version 4.3, DDC, Inc., National Institute of Standards and Technology,

MicroVAX II under MicroVMS, Version 4.6 (host) to Intel 80186 iSBC 186/03A under

Bare (target), ACVC 1.10

89 5 30 006
DD lul 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN S/N 010Z-LF-014-6601 UNCLASSTFIED
SECURITY CLASSIFICATION Of T1S PAGE (When Date Entered)

AVF Control Number: NIST89VDDC530I.10
DRAFT COMPLETED: 03-31-89
FINAL COMPLETED: 04-25-89

Ada Compiler Validation Summary Report:

Compiler Name: DACS-80186, Version 4.3

Certificate Number: 890324S1.10067

Host: MicroVAX II under MicroVMS, Version 4.6

Target: Intel 80186 iSBC 186/03A under Bare

Testing Completed 24 March 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation iyte
Dr. David K. JefTn
Chief, Information Systems

Engineering Division
National Computer Systems Laboratory (NCSL)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, D 20S99 Accession For

NTIS GRA&I
-DTIC TAB

Unannounced Q
_ _ _ _ _ _ _Justifloatio-

A:a Validation Organization
Dr. John F. 1ramer Y

Institute for Defense Analyses Distribution/
Alexandria VA 22311 Avallability Codes

Dist Special

Ada'Ioint Program Office
Dr. john Solomond
Director
Washington D.C. 20301

AVF Control Number: NIST89VDDC5301.10
DRAFT COMPLETED: 03-31-89
FINAL COMPLETED: 04-25-89

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890324S1.10067
DDC, Inc.

DACS-80186, Version 4.3
MicroVAX II Host ana Intel 80186 iSBC 186/03A Target

Completion of On-Site Testing:
24 March 1989

Prepared By:
Softwarr Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

AVF Control Number: NIST89VDDC530_1.10
DRAFT COMPLETED: 03-31-89
FINAL COMPLETED: 04-25-89

Ada Compiler Validation Summary Report:

Compiler Name: DACS-80186, Version 4.3

Certiticate Number: 89U324S1.10067

Host: MicroVAX II under MicroVMS, Version 4.6

Target: Intel 80186 iSBC 186/03A under Bare

Testing Completed 24 March 19S9 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validto t il
Dr. David K.Je e-

Chief, Information Systems
Engineering Division
National Computer Systems Laboratory (NCSL)
National Insti:ute of Standards and Technology
Building 225, Room A266
Gaithersburg, XD 20S99

Ada Validation C aniza n
Dr. John F. rae,: 5nT ,Institute for Def"ense A-nal:se
Alexandria VA 22311 "

Ada Joint Program Office
Dr. John Solomond

Director
Washington D.C. 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2

1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS1-3

1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1

2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1

3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2

3.4 WITHDRAWN TESTS3-2

3.5 INAPPLICABLE TESTS 3-2

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-6

3.7 ADDITIONAL TESTING INFORMATION 3-7

3.7.1 Prevalidation3-7
3.7.2 Test Method3-7
3.7.3 Test Site 3-8

APPENDIX A CONFO LANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY

DDC-I, Inc.

CHAPTER 1

INTRODUCTION

This Validation Summary Report -(VSRA describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.

This report explains all technical terms used within it and thoroughly

reports the results oft- ti this compiler using the Ada Compiler
Validation Capability -(ACVG)o An Ada compiler must be implemented

according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that

is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between

implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the

maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. - The purpose of validating is to ensure

conformity of the compiler to the Ada Standard by testing that the
compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also

identifies behavior that is implementation dependent, but is permitted
by the Ada Stardard. Si:.: classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

1-1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

• To attempt to identify any language constructs supported by the

compiler that do not conform to the Ada Standard

* To attempt to identify any language constructs not supported by

the compiler but required by the Ada Standard

* To determine that the implementation-dependent behavior is allowed

by the Ada Standard

Testing of this compiler was conducted by the AVF according to
procedures established by the Ada Joint Program Office and administered

by the Ada Validation Organization (AVO). On-site testing was completed

24 March 1989 at Phoenix, Arizona.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United

States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to the

computers, operating systems, and compiler versions identified in this

report.

The organizations represented on the signature page of this report do
not represent or warrant -hat all statements set forth in this report

are accurate and complete, or that the subject compiler has no

nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)

Washington DC 20301-3081

or from:

Software Standards Validation Group

National Computer Systems Laboratory
National Institue of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to
the Commentary point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form Al-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure

1-3

consistent practices.

Compiler A processor for the Ada language, In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and

interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term

i- used to deqignate a single test, which may comprise

one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be

incorrect because it has an invalid test objective,
fails to mneet its test objective, or contains illegal or

erroneous use of the language.

1.5 ACVC TEST CL-%SSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test

classes: A, B, C, D, E, and L. The first letter of a test name

identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce

compilation errors. Class L tests are expected to produce errors

because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal

Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test

to check semantics. For example, a Class A test checks that reserved

1-4

words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Add
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capa.-ity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-lependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an intplementation to reject programs
containing some features addressed hv Class E tests during compilation.
Therefore, a Class E test is passed by a rompiler if iL is compikU
successfully and executes to produce a PASSED message, or if it is
re'ected by the compiler for an allowable reason.

Class L tests cneci. t,at incomplete or illegal Ada programs involving
multiple, separatel: compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the
test.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity

1-5

functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure
CHECKFILE is used to check the contents of text files written by some
of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.
A test that is inapplicable for one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

1-6

CHAPTER 2

CONFIGURaTION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: DACS-80186, Version 4.3

ACVC Version: 1.10

Certificate Number: 890324SI.10067

Host Computer:

Machine: MicroVAX II

Operating System: MicroVMS, Version 4.6

Memory Size: 16MBytes

Target Computer:
Machine:

Board: inz:ei S0186 iSBC 186,'03A
CPU 8018
Bus: NULT!BUS 1
I/C: 8270

imer" 80130

Operati ng Syst:em: Bare

Memory Size: 1MByte

Communications Network: The host computer, a MicroVAX II, was

linked via ETHERNET to an IBM PC XT which
is connected to the target computer, an

Intel 80186 iSBC 186/03A, via an in-
circuit emulator (I2ICE).

2-1

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

(3) The compiler rejects tests containing block statements
nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined
types SHORT INTEGER, LONGFLOAT,and LONGINTEGER in the
package STANDARD. (See Lests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in .:hich expressions are evaluated and the time at
which constraints are checked are not defined by the language.

While the ACVC tests do not specifically attempt to determine
the order of evaluation of express-ions, test results indicate
the following:

(1) All of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

2-2

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERIC_ERROR is raised when an integer literal operand in
a comparison or membership test is outside the range of the
base type. (See test C45232A.)

(5) NUMERICERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRA7 ... EPR for an array having a 'LENGTH that exceeds
STANDARPD.INEGER LAST and/or SYSTEM.MAX INT. For this
implementation:

(1) Declaration of an array type or subtype declaration with
more than SYSTEM.MAXINT components raises NUMERICERROR.
(See test C36003A.)

(2) NUMERICERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERICERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

2-3

(4) A packed BOOLEAN array having a 'LENGTH exceeding

INTEGER'LAST raises NUMERIC ERROR when declaring two packed
Boolean arrays with INTEGER'LAST + 3 components. (See test

C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than

INTEGER'L .ST components raises NUMERIC_ERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an

implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMERIC ERROR when the array type is
declared. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is

compatible with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
iot evaluated in its entirety before CONSTRAINTERROR is

raised when checking whether the expression's subtype is

compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the
expression is evaluated in its entirety before

CONSTRAINT ERROR is raised when checking whether the

expression s subtype is compatible with the target's

subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the

test results indicate that all choices are evaluated before

checking against the index type. (See tests C43207A and
C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate

does not belong to an index subtype. (See test E43211B.)

2-4

h. Pragmas.

(1) The pragma INLINE is supported for functions or procedures.
(See tests LA3004A. .B (2 tests), EA3004C. .D (2 tests), and
CA3004E..F (2 tests).)

i. Generics.

(1) Generic specifications and bodies cannot be compiled in
separate compilations. (See tests CA2009C, CA2009F,
BC3204C, and BC3205D.)

Generic package declarations and bodies can be compiled in
separate compilations so long as no instantiations of those
units precede the bodies. This compiler requires that a
generic unit's body be compiled prior to instantiation, and
so the unit containing the instantiations is rejected.

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

(3) Generic subprogram declarations and bodies can be compiled
in separate compilations. (See test CAlOl2A.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CA1012A.)

(5) Generic non-library subprogram bodies cannot be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic package declarations and bodies cannot be compiled
in separate compilations. (See tests CA2009C, BC3204C, and
BC2205D.)

(7) Generic library package specifications and bodies cannot be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits cannot be
compiled in separate compilations. (See test CA2009C.)

(9) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3OIIA.)

j. Input and output.

(1) The package SEQUENTIALIO cannot be instantiated with

2-5

unconstrained array types and record types with
discriminants without defaults. (See tests EE2201D and
EE2201E.)

(2) The package DIRECT 10 cannot be instantiated with
unconstrained array types and record types with

discriminants without defaults. (See tests EE2401D and
EE2401.)

(3) USEERROR is raised when Mode INFILE is not supported for
the operation of CREATE for SEQUENTIALIO. (See teat
CE2102D.)

(4) USE ERROR is raised when Mode IN FILE is not supported for
the operation of CREATE for DIRECT_10. (See test CE21021.)

(5) USEERROR is raised when Mode IN FILE is not supported for
the operation of CREATE for text files. (See test
CE3102E.)

(6) Modes IN FILE and OUT FILE not are supported for text
files. (See tests CE3102E and CE31021.)

(7) RESET and DELETE operations are not supported for
SEQUENTIALIO. (See tests CE2102G and CE2102X.)

(8) RESET and DELETE operations are not supported for
DIRECTIO. (See tests CE2102K and CE2102Y.)

(9) RESET and DELETE operations are not supported for text
files. (See tests CE3102F..G (2 tests), CE31O4C, CE311OA,
and CE3114A.)

(10) Only one internal file can be associated with each external
file for sequential files when writing only. (See tests
CEl'O2T.)

(11) More than one internal file can be associated with the each
external file for direct files when writing or reading.
(See tests CE21O7F.)

2-6

CHAPTER 3

TEST INFORNATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. Uhen this compiler was

tested, 43 tests had been withdrawn because of test errors. The AVF

determined that 657 tests were inapplicable to this implementation. All

inapplicable tests were processed during validation testing except for

201 executable tests that use floating-point precision exceeding that
supported by the implementation and 245 executable tests that use file

operations not supported by the implementation. Modifications to the

code, processing, or grading for 73 tests were required to successfully

demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable

conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 123 1132 1685 16 15 46 3017

Inapplicable 6 6 631 1 13 0 657

Withdrawn 1 2 34 0 6 0 43

TOTAL 130 11!0 2350 17 34 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14 _

Passed 195 572 554 247 172 99 161 332 135 36 250 188 76 3017

Inapplicable 17 77 126 1 0 0 5 1 2 0 2 1.81 245 657

Wdrn 1 1 0 0 0 0 0 1 0 0 1 35 4 43

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time

of this validation:

A39005C B97102E BC3009B CD2A62D CD2A63A CD2A63B
CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C CD2A66D
CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A CD2A76B

CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M CD2A84N

CD2Bl5C CD2DllB CD5007B CD50110 CD?105A CD7203B
CD7204B CD7205C CD7205D CE21071 CE3111C CE3301A

CE3411B E28005C ED7004B ED7005C ED7005D ED7006C

ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of

features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either

inapplicable or withdrawn. The applicability of a test to an

implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily

inapplicable for a subsequent attempt. For this validation attempt, 657

tests were inapplicable for the reasons indicated:

The following 201 tests are not applicable because they have

floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

3-2

C35708L..Y (I tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (i4 tests) C46012L..Z (15 tests)

C241131..K (3 tests) are not applicable because the line length of
the input file must not exceed 126 characters.

A39005E, C87B62C, CD009L, CDIC03F, CD2DllA, and CD2Dl3A (6 tests)
are not applicable because 'SMALL clause is not supported.

C355081, C35508J, C35508M, C35508N, ADlC04D, AD3015C, AD3015F,
AD3015H, AD3015K, CDlC04B, CDIC04C, CDIC04E, CD2A23C, CD2A23D,
CD2A24C, CD2A24D, CD2A24G, CD2A24H, CD3015A, CD3015B, CD3015D,
CD3015E, CD3015G, CD3015I, CD3015J, CD3015L, CD4051A, CD4051B,
CD4051C, and CD4051D (30 tests) are not applicable because this
implementation does not support the specified hange in
representation for derived types.

C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONGINTEGER, or SHORT INTEGER.

C4AOI3B is not: applicable because the evaluation of an expression
involving .. INE_RADIX applied to the most precise floating-point
type would raise an exception; since the expression must be static,
it is rejected at compile time.

D56001B uses 5 levels of block nesting which exceeds the capacity
of the compiler.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

C45531M, C4553.N, C45532M, and C45532N use fine 48 bit fixed point
base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48 bit fixed
point base types which are not supported by this compiler.

C96005B is not applicable because there are no values of type
DURiTION'BASE that are outside the range of DURATION.

CA2009C is not applicable because this implementation does not

3-3

permit compilation of generic non-library package bodies in
separate files from their specifications.

CA2009F is not applicable because this implementation does not
permit compilation of generic non-library subprogram bodies in
separate files from their specifications.

BC3204C and BC3205D are not applicable because this implementation
does not permit compilation of generic library package bodies in
separate files from their specifications.

CDlO09C, CD2A41A..B, CD2A41E, and CD2A42A..J (14 tests) are not
applicable because this implementation does not support the 'SIZE
clause fei floating-point types.

CD2A5IA..B, CD2A51D..E, CD2A52A..D, CD2A52G..J, CD2A53A..E,
CD2A54A..D, CD2A54G..J, and ED2A56A (26 tests) are not applicable
because this implementation does not support the 'SIZE clause for a
fixed-point types.

CD2A61A..L, CD2A62A..C, CD2A64A..D, CD2A65A. .D, CD2A7lA. .D,
CD2A72A..D, CD2A74A..D, and CD2A75A..D (39 tests) are not
applicable because this implementation does not support the 'SIZE
clause for an array type which does not imply compression of inter-
component gaps.

CD2A84B..I and CD2A84K..L (10 tests) are not applicable because
this implementation does not support the 'SIZE clause for an access
type.

CD5003B..I, CD5OllA, CD5011C, CDSOlE, CD5OIIG, CD5011I, CD5011K,
CD5011M, CD5OIIQ, CD5012A..B, CD5OI2E..F, CD5012I, CD5012M,
CD5013A, CD50i3C, CD5013E, CD5013G, CD50131, CD5Ol3K, CD5013M,
CD50130, CD50!4T, and CD5014V..Z (36 tests) are not applicable
because this implementation does not support non-static address
clauses for a variable.

CD5011B, CD5011D, CD5011F, CDS01IH, CD50!!L, CD5OIIN. CD5011R,
CD5011S, CD502C..D, CD5012G..H, CD5012L, CD5Ol3B, CD5OI3D,
CD50!3F, CD5013H, CD5013L, CD3013N, CD50!3R, and CD504U (21 tests)
are not applicable because this implementation does not support
non-static address clauses for a constant.

CD5Ol2J, CD5013S, and CD5014S (3 tests) are not applicable because
this implementation does not support non-static address clauses.

CD404A is not applicable because this implementation does not
support the aligrnment clauses for alignments other than
SYSTEM.STORAGEUNIT for record representation clauses.

The following 242 tests are inapplicable because sequential, text,
and direct access files are not supported:

3-4

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103C. .D (2 tests) CE2104A..D (4 tests)
CE2105A. .B (2 tests) CE2106A..B (2 tests)
CE2107A. .H (8 tests) CE2107L
CE2108A. .H (8 tests) CE2109A..C (3 tests)
CE2110A. .D (4 tests) CE2111A..I (9 tests)

CE2115A. .B (2 tests) CE2201A..C (3 tests)
EE2201D. .E (2 tests) CE2201F..N (9 tests)
CE2204A. .D (4 tests) CE2205A
CE2208B CE2401A..C (3 tests)
EE2401D CE2401E..F (2 tests)
EE2401G CE2401H..L (5 tests)
CE2404A..B (2 tests) CE2405B
CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests)
CE2410A..B (2 tests) CE2411A
CE3102A..B (2 tests) EE3102C
CE3102F..H (3 tests) CE3102J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE3107B CE3108A..B (2 tests)
CE31O9A CE3110A
CE3111A..B (2 tests) CE3111D..E (2 tests)
CE3112A..D (4 tests) CE3114A..B (2 tests)

CE3115A EE3203A
CE3208A EE3301B
CE3302A CE3305A
CE3402A EE3402B
CE3402C..D (2 tests) CE3403A..C (3 tests)

CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A EE3405B
CE3405C..D (2 tests) CE3406A..D (4 tests)

CE3407A..C (3 tests) CE3408A..C (3 tests)
CE3409A CE3409C..E (3 tests)
EE3409F CE3410A
CE3410C. E (3 tests) EE341OF
CE3411A CE3411C
CE3412A EE3412C
CE3413A CE3413C
CE3602A. .D (4 tests) CE3603A
CE3604A. .B (2 tests) CE3605A..E (5 tests)
CE3606A..B (2 tests) CE3704A..F (6 tests)

CE3704M. .O (3 tests) CE3706D
CE3706F. .G (2 tests) CE38C4A..P (16 tests)

CE3805A. .B (2 tests) CE3806A..B (2 tests)

CE3806D. .E (2 tests) CE3806G..H (2 tests)
CE3905A. .C (3 tests) CE3905L
CE3906A. .C (3 tests) CE3906E..F (2 tests)

CE2103A, CE2103B, and CE3107A (3 tests) are not applicable because

these tests expect that CREATE <badfile name> will cause

3-5

only NAME ERROR to be raised; but for implementations that do not
support file I/0, it is preferable that USEERROR be raised, and
that is what this implementation does.

3.6 TEST, PROCESSINC, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subte::. so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 73 tests.

The following 64 tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B26001A B26002A B26005A B28001D B29001A
B2AOO3B B2AO03C B33301B B35101A B37106A B37301B
B37102A L38003A E38SOO3n B38009A B38009B B51001A
B53009A B5401C B54AOlH B55AOiA B61001C B61OOID
B61OO1F B61001.H B61001I B610O1M B61001R B61001S
B61001W B67001H B91OOIA B91002A B91002B B91002C
B91002D B91002E B91002F B91002G B91002H B910021
B91002J B91002K B91002L B95030A B95061A B95061F
B95061G B95077A B97103E B97104G BA1101B BC1109A
BC1109C BCli09D BC1202A BC1202B BC1202E BC1202F
BC1202G BCO1D BC2001E BC3009A

The following 9 tests contain modifications 'o their respective source
code files:

ADTOO6A 0 o:0 6 assumes that an expression in an assignment
statement is of type universal integer, and so should deliver a
correct resu :- that is in the range of type INTEGER. This
implementation is correct in treating the expression a being of
type INTEGER; an exception is raised because the operand
SYSTEM.MEMORY S7ZE exceeds CEP0'LAST.

The implementer's modification of this test (declaring the assigned
-- variable I to be of type LONGINTEGER) is ruled to be an
acceptable means to passing this test by the AJPO.

C34007A, C34007D, C34007G, C34007J, C34007M, C34007P, C34007S, and
C87B62B (8 tests) The AVO accepts the implementer's argument that,
without there being a STORAGE SIZE length clause for an access
type, the meaning of the attribute 'STORAGESIZE is undefined for

3-6

that a type.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the DACS-80186, Version 4.3 compiler was submitted to the
AVF by the applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the DACS-80186, Version 4.3 compiler using ACVC Version 1.10
was conducted on-site by a validation team from the AVF. The
configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host computer: MicroVAX II
Host operating system: MicroVMS, Version 4.6
Target computer: Intel 80186 iSBC 186/03A
Target operating system: Bare
Compiler: DACS-80186, Version 4.3
Pre-linker: DACS-80186 LINKER
Assembler: INTEL ASM86
Linker: INTEL LINK86
Loader/Downloader: INTEL LOC86
Runtime System: DDC-I RTS

The host computer, a MicroVAX II, was linked via ETHERNET to an IBM PC
XT which is connected to the target computer, an Intel 80186 iSBC
186/03A, via an in-circuit emulator (I21CE).

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of -i.plmentation-spec:fic values -ere customized before being
written to the magnetic tape. Tests requiring modifications during the
prevalidation testing were included in their modified form on the
magnetic tape.

TEST INFORMATION

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files ,-er, loaded to disk, the full set of tests was
compiled and linked on the MicroVAX II, and all executable tests were
run on the Intel 80186 iSBC 186/03A. Results were printed from the host
computer.

3-7

The compiler was tested using command scripts provided by DDC, Inc. and
reviewed by the validation team. The compiler was tested using the
following option settings. See Appendix E for a complete listing of the
compiler options for this implementation.

/LIST
/NOSAVE

Tests were compiled, linked, and executed (as appropriate) using a
single host and target computer. Test output, compilation listings, and
job logs were captured on magnetic tape and archived at the AVF.
Selected listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at Phoenix, Arizona and was completed on 24 March
1989.

3-8

APPENDIX A

'r~AP.'IC~zOF CONFORMANCE

DDG, Inc. has submitted the following Declaration of
Conformance concerning the DACS-FOl86, Version 4.3.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementer: DDC-I, Inc.
Ada Validation Facility: National Institute of Standards and

Technology
ACVC Version: ACVC 1.10

Base Configuration

Base Compiler Name: DACS-80186 Version: 4.3
Host Architecture - IS.: MicroVAX II OS&VER: MicroVMS 4.6
Target Architecture - ISA: Intel 80186 iSBC 186/03A OS&VER: Bare

Derived Compiler Registration

For the following derived compilers, both the input files for the
ACVC tests and the result files for the ACVC tests are
the same as that for the base configuration.

Base Compiler Name: DACS-80186 Version: 4.3
Host Architecture - ISA: Complete DEC Family of Vax,

Vax Station, and MicroVax Computers
OS&VER: Vax/VMS 4.6 & 5.0,

or MicroVMS 4.6 & 5.0
Target Architecture - ISA: Intel 80186 iSBC 186/03A OS&VER: Bare

Base Compiler Name: DACS-8086 Version: 4.3
Host Architecture - ISA: Complete DEC Family of Vax,

Vax Station, and MicroVax Computers
OS&VER: Vax/VMS 4.6 & 5.0,

or MicroVMS 4.6 & 5.0
Target Architecture - ISA: Intel 8086 iSBC 86/05A OS&VER: Bare

Base Compiler Name: DACS-80286 Version: 4.3
Host Architecture - ISA: Complete DEC Family of Vax,

Vax Station, and MicroVax Computers
OS&VER: Vax/VMS 4.6 & 5.0,

or MicroVMS 4.6 & 5.0
Target Architecture - ISA: Intel 80286 iSBC 286/12 OS&VER: Bare

Base Compiler Name: DACS-80286 Protected Mode
Version: 4.3

Host Architecture - ISA: Complete DEC Family of Vax,
Vax Station, and MicroVax Computers

OS&VER: Vax/VMS 4.6 & 5.0,
or MicroVMS 4.6 & 5.0

Target Architecture - ISA: Intel 80286 iSBC 286/12
OS&VER: Bare (Protected Mode)

Base Compiler Name: DACS-80386 Version: 4.3
Host Architecture - ISA: Complete DEC Family of Vax,

Vax Station, and MicroVax Computers
OS&VER: Vax/VMS 4.6 & 5.0

or MicroVMS 4.6 & 5.0
Target Architecture - ISA: Intel Multibus II 80386 iSBC 386/116

OS&VER: Bare

Base Compiler Name: DACS-80386 Version: 4.3
Host Architecture - ISA: Complete DEC Family of Vax,

Vax Station, and MicroVax Computers
OS&VER: Vax/VMS 4.6 & 5.0

or MicroVMS 4.6 & 5.0
Target Architecture - ISA: Intel Multibus I 80386 iSBC 386/21

OS&VER: Bare

Implementer's Declaration

I, the undersigned, representing DDC-I, Inc. have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-
1815A in the compiler(s) listed in this declaration. I declare
the DDC-I, Inc. is the owner of record of the Ada language
compiler(s) listed above and, as such, is responsible for
maintaining said compiler(s) in conformance to ANSI/MIL-STD-
1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the
owner's coporate name.

Lee Silverthorn, President - DDC-I, Inc.

Owner's Declaration

I, the undersigned, representing DDC-I, Inc. take full
responsibility for implementation and maintenance of the Ada
compiler(s) listed above, and agree to the public disclosure of
the final Validation Summary Report. I further agree to continue
to comply with the Ada trademark policy, as defined by the Ada
Joint Program Office. I declare that all of the Ada language
compilers listed, and their host/target performance are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A. I
have reviewed the Validation Summary Report for the compiler(s)
and concur with the contents.

Lee Silverthorn, President - DDC-I, Inc. Date/

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent

conventions as mentioned in chapter 13 of the Ada Standard, and to

certain allowed restrictions on representation clauses. The

implementation-dependent characteristics of the DACS-80186, Version 4.3

compiler, as described in this Appendix, are provided by DDC-I, Inc..

Unless specifically noted otherwise, references in this appendix are to

compiler documentation and not to this report. Implementation-specific

portions of the package STANDARD, which are not a part of Appendix F,

are:

package STANDARD is

type INTEGER is range -32_768 .. 32_767

type SHORT INTEGER is range -128 .. 127;

type LONGINTEGER is range -2_147_483_648 ..2_147_483_647;

type FLOAT is digits 6 range
-3.40282366920938E+38 ..3.40282366920938E+38;

type LONGFLOAT is digits 15 range
-1.7976931348623157E+308 ..1.7976931348623157E+308;

type DURATION is delta 6.10351562500000E-05 range

-131_072.00000 ..131_071.00000

end STANDARD;

B-I

APPENDIX F
IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent
characteristics of DACS-80X863 as required in Appendix F of the
Ada Reference Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Dependent Pragmas

This section describes all implementation defined pragmas.

F.1.1 Pragma INTERFACE-SPELLING

This pragma allows an Ada program to call a non-Ada program whose
name contains characters that would be an invalid Ada subprogram
identifier. This pragma must be used in conjunction with pragma
INTERFACE, i.e., pragma INTERFACE must be specified for the non-
Ada subprogram name prior to using pragma INTERFACE SPELLING.

The pragma has the format:

pragma INTERFACESPELLING (subprogram name,
string literal);

where the subprogram name is that of one previously given in
pragma INTERFACE and the string literal is the exact spelling of
the interfaced subprogram in its native language. This pragma is
only recuired when the subprogram name contains invalid
characters for Ada identifiers.

Example:

function RTS GetDataSegment return intecer;

pragma INTERFACE (ASM86, RTS GetDataSegment);
pragma INTERFACE SPELLING (RTSGetDataSegment,

"RiSMGS?GetDataSegment");

F.1.2 Pragma INTERRUPT HANDLER

This pragma will cause the compiler to generate fast interrupt
handler entries instead of the normal task calls for the entries
in the task in which it is specified. It has the format:

pragma INTERRUPT HANDLER;

Page F-1

User's Guide
Appendix F

The pragma must appear as the first thing in the specification of
the task object. The task must be specified in a package and not
a procedure. See section F.6.2 foz mcre details and restrictions
on specifying address clauses for task entries.

F.1.3 Pragma LTSTACKSPACE

This pragma sets the size of a library task stack segment.

The pragma has the format:

pragma LTSTACKSPACE (T, N);

where T denotes either a task object or task type and N
designates the size of the library task stack segment in words.

The library task's stack segment defaults to the size of the
library task stack. The size of the library task stack is
normally specified via the representation clause

for T'STORAGESIZE use N;

The size of the library task stack segment determines how many
tasks can be created which are nested within the library task.
All -asks created within a library task will have their stacks
allocated from the same segment as the library task stack. Thus,
pragma LT STACKSPACE must be specified to reserve space within
the library task stack segment so that nested tasks' stacks may
be allocated.

The following restrictions are places on the use of
LT STACK SPACE:

1) :t must be used only for library tasks.

2) :t m;us be placed immediately after the task object or
zype name declaration.

3) The library task stack segment size (N) must be greater
than or equal to the library task stack size.

.2 Implementation-Demendent Attributes

No implementation-dependent attributes are defined.

F.3 Package SYSTEM

The specificaticn of the package SYSTEM for the 80x86 Real
Address Mode and 80286 Protected Mode systems is:

Page F-2

User's Guide

Appendix F

package System is

type Word is new Integer;
type LongWord is new Long_Integer;

type UnsignedWord is range 0..65535;
for UnsignedWord'SIZE use 16;

subtype Segmentld is UnsignedWord;

type Address is record
offset : UnsignedWord;
segment : Segmentld;

end record;

subtype Priority is Word range 0..31;

type Name is (iAPX86,
iAPX186,
iAPX286,
iAPX386);

System_Name constant Name iAPX186;
Storage_Unit constant 16;
Memory_Size constant 1 048 576;
Min Int constant := -2 147 483 647-1;
Max Int constant := 2 147483647;
Max Digits constant 15;

Max Mantissa : constant := 31;
Fine Delta constant 2.0 / MAX INT;
Tick constant 0.000_000125;

type Interface Language is (PLM86, ASM86);

type Exceptionld is record
unit number : UnsignedWord;
unique_number : UnsignedWord;

end record;

type TaskValue is new Integer;
type AccTaskValue is access TaskVai-e;

type Semaphore is
record

counter : UnsignedWord;
first : TaskValue;
last : TaskValue;

end record;

InitSemaphore constant Semaphore'(l, 0, 0);

end SYSTEM;

Page F-3

User's Guide
Appendix F

The package SYSTEM specification for the 80386 Protected Mode
system is:

package System is

type Word is new ShortInteger;
type DWord is new Integer;
type QWord is new Long Integer

type UnsignedWord is range 0..65535;
for UnsignedWord'SIZE use 16;
type UnsignedDword is range O..16#7FFFFFFF#;
for UnsignedDWord'SIZE use 32;

subtype Segmentld is UnsignedWord;

type Address is record
offset : UnsignedDWord;
segment : Segmentld;

end record;

subtype Priority is Word range 0..31;

type Name is (iAPX86,
iAPX186,
iAPX286,
iAPX386,
iAPX386_SM,
iAPX386 FM);

SystemName : constant Name := iAPX386 SM;
StorageUnit : constant := 16;
Memory_Size constant := 1 048 576;
Min Int constant := -16#800150000 0000 0000#;
Max-I.t constant := 16#7FFF FFFF FFFF TFFF#;
MaxDigits constant = 15; -

Max Ma ntissa constant 31;
Fine Delta : constant 2"1.0 E-31;
ick : constant 0.000_000_:25;

type interfaceLanguage is (PLM86, ASM86,
C86, C86 REVERSE);

type Exceptionid is record
unit number : UnsignedDWord;
unique_number : UnsignedDWord;

end record;

type TaskValue is new Integer;
type AccTaskValue is access TaskValue;

Page F-4

User's Guide
Appendix F

type Semaphore is
record

counter : UnsignedWord;
first : TaskValue;
last : TaskValue;

end record;

InitSemaphore constant Semaphore'(1, 0, 0);

end SYSTEM;

F.4 Representation Clauses

The DACS-80x863 fully supports the 'SIZE representation for
derived types. The representation clauses that are accepted for
non-derived types are described in the following subsections.

F.4.1 Length Clause

Some remarks on implementation dependent behavior of length
clauses are necessary:

- When using the SIZE attribute for discrete types, the
maximum value that can be specified is 16 bits.

- SIZE is only obeyed for discrete types when the type is a
part of a composite object, e.g. arrays or records, for
example:

type byte is range 0..255;
for byte'size use 8;

sixteen bits allocated byte; -- Cne word

eight_bit_per_element : array(O..7) of byte;
-- four wcrds
--al!oca-.et

type rec is
record

cl,c2 : byte; -- eight b*its per
-- component

end record;

Page F-5

User's Guide
Appendix F

- Using the STORAGE SIZE attribute for a collection will set
an upper limit on the total size of objects allocated in
this collection. If further allocation is attempted, the
exception STORAGEERROR is raised.

- When STORAGE SIZE is specified in a length clause for a task,
the process stack area will be of the specified size. The
process stack area will be allocated inside the "standard"
stack segment.

F.4.2 Enumeration Representation Clause

Enumeration representation clauses may specify representations in
the range of INTEGER'FIRST + I..INTEGER'LAST - 1.

F.4.3 Record Representation Clauses

When representation clauses are applied to records the following
restricticns are imposed:

- the component type is a discrete type different from
LONGINTEGER

- the component type is an array with a discrete element

type different from LONGINTEGER

- the storage unit is 16 bits

- a record occupies an integral number of storage units

- a record may take up a maximum of 32K storage units

- a component must be specified with its proper size (in
bits), regardless of whether the component is an array cr
not.

- if a non-array component has a size which equals or
exceeds one storage unit (16 bits) the component must start
on a storage unit boundary, i.e. the component must be
specified as:

component at N range 0..16 * M - 1:

where N specifies the relative storage unit number
(0,1) from the beginning of the record, and M the
required number of storage units (1,2,...)

- the elements in an array component always be wholly
contained in one storage unit

Page F-6

User's Guide
Appendix F

- if a component has a size which is less than one
storage unit, it must be wholly contained within a single
storage unit:

component at N range X .. Y;

where N is as in previous paragraph, and 0 <= X <= Y <= 15

When dealing with PACKED ARRAY the following should be noted:

- the elements of the array are packed into 1,2,4 or 8 bits

If the record type contains components which are not co'ered by a
component clause, they are allocated consecutively after the
component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit
boundary. Holes created because of component clauses are not
otherwise utilized by the compiler.

F.4.3.1 Alignment Clauses

Alignment clauses for records are implemented with the following
characteristics:

- If the declaration of the record type is done at the
outermost level in a library package, any alignment is
accepted.

- If the record declaration is done at a given static
level (higher than the outermost library level, i.e.,
the permanent area), only word alignments are accepted.

- Any record object declared at the outermost level in a
library package will be aligned according to the align-
ment clause specified for the type. Record objects
declared elsewhere can only be aligned on a word
bundary. 7f I the record type has been associated a
dlfferenr alignment, an error message will be issued.

If a record type with an associated alignment clause is
used in a composite type, the alignment is required to
be one word; an error message is issued if this is ncz
the case.

F.5 Implementation-Dependent Names for Implementation
-Dependent Components

None defined by the compiler.

Page F-7

• , i I IMI

User's Guide

Appendix F

F.6 Address Clauses

This section describes the implementation of address clauses and
what types of entities may have their address specified by the
user.

F.6.1 Objects

Address clauses are supported for scalar and composite objects
whose size can be determined at compile time.

F.6.2 Task Entries

The implementation supports two methods to equate a task entry to
a hardware interrupt through an address clause:

1) Direct transfer of control to a task accept statement
when an interrupt occurs (requires use of the pragma
INTERRUPTHANDLER).

2) Mapping of an interrupt onto a normal conditional entry
call, i.e., the entry can be called from other tasks
without special actions, as well as being called when an
interrupt occurs.

F.6.2.1 Fast Interrupt Entry

Directly transferring control to an accept statement when an
interrupt occurs rqures the implementation dependent pragma
:NTERRUPT HANDLER to tell the compiler that the task is an
interrupt handier. By using this pragma, the user is acreeing tI
piace certain restrictions on the task in order to speed up the
software response to the hardware interrupt. Consequentl7y, use

:"Z tnine-d to cact.re interruts is muon more efficient
zie genera! method.

The following constraints are placed on the task:

-) 7t must be a task object, i.e., not a task type.

2) The pragma must appear first in the specifica-icn of the
task object.

All entries of the task object must be single entries
with no parameters.

4) The entries must not be called from any task.

Page F-8

User's Guide
Appendix F

5) The body of the task object must not contain anything
other than simple accept statements (potentially
enclosed in a loop) referencing only global variables,
i.e., no local variables. In the statement'list of a
simple accept statement, it is allowed to call normal,
single and parameterless, entries of other tasks, but no
other tasking constructs are allowed. The call to
another task entry, in this case, will not lead to an
immediate task context switch, but will return to the
caller when complete. Once the accept is completed, the
task priority rules will be obeyed, and a context switch
may occur.

F.6.2.2 Normal Interrupt Entry

Mapping of an interrupt onto a normal conditional entry call puts
the following constraints on the involved entries and tasks:

1) The affected entries must be defined in a task object
only (not a task type).

2) The entries must be single and parameterless.

Any interrupt entry, which is not found in an interrupt hancler
(first method), will lead to an update of the interrupt vector
segment at link time. The interrupt vector segment will be
updated to point to the interrupt routine generated by the
compiler to make the task entry call. The interrupt vector
segment is part of the user configurable data and consists of a
segment, preset to the "standard" interrupt routines (e.g.,
constraint error). See section 7.2.15 (RTS Configuration of
Interrupt Vector Ranges) for details on how to specify interrupz
vector ranges.

F.7 Unchecked Conversions

Unchecked conversion is only allowed between objects of the same
"size".

Page F-9

User's Guide
Appendix F

F.8 Input/Output Packages

In many embedded systems, there is no need for a traditional I/O
system, but in order to support testing and validation, DDC-I has
developed a small terminal oriented I/O system. This I/O system
consists essentially of TEXT IO, adapted with respect to handling
only a terminal and not file I/O (file I/O will cause a USE error
to be raised), and a low level package called TERMINALDRIVER. A
BASIC IC package has been provided for convenience purposes,
forming an interface between TEXT _I and TERMINAL DRIVER as
illustrated in the following figure.

TEXTIO
BASIC_10

TERMINAL DRIVER
(H/W interface)

The TERMINAL DRIVER package is the only package that is target
dependent, i.e., it is the only package that need be changed when
changing communications controllers. The actual body of the
TERMINAL DRIVER is written in assembly language, but an Ada
interface to this body is provided. A user can also call the
terminal driver routines directly, i.e., from an assembly
!:..uace routine. TEXT 10 and BASIC_10 are written completely in
A.-a anz need not be changed.

BAS:C i0 provides a mapping between TEXT 10 ccntrol charac:ers
ana ASC2_ as fclows:

T::T_-r I ASC:I Character

LINE TERMINATOR ASCII.CR
PAGE TRM:NAT7R ASCII.F=
F7LE TERMINATOR ASCII.E. (ctrl Z)
NEW LINE ASCII. LF

Page F-!0

User's Guide

Appendix F

The services provided by the terminal driver are:

1) Reading a character from the communications port.

2) Writing a character to the communications port.

The terminal driver comes in two versions: one which supports
tasking, i.e., asynchronous 1/O, and a version which assumes no
tasking.

F.8.1 Package TEXT-I

The specification of package TEXT 10:

pragma page;
with BASICIO;

with IO EXCEPTIONS;

package TEXT_10 is

type FILETYPE is limited private;

type FILEMODE is (IN_FILE, OUTFILE);

type COUNT is range 0 .. INTEGER'LAST;
subtype POS:TIVE COUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0; -- line and page len::h

-- max. size of an integer output field 2
subtype FIELD is INTEGER range 0 .. 35;

subtype NUMBERBASE is INTEGER range 2 .. 1-;

type TYPESET is (LOWERCASE, UPPERCASE);

pr aama PAGE;
-- File Management

procedure CREATE (FILE : in out FILE TYPE;
MODE : in FILE MODE :=OUT
NAME : in STRING
FORM : in STRING

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING

Page F-I

User's Guide
Appendix F

procedure CLOSE (FILE : in out FILETYPE;)
procedure DELETE (FILE : in out FILE TYPE);
procedure RESET (FILE : in out FILE TYPE;

MODE : in FILE MODE);
procedure RESET (FILE : in out FILE TYPE);

function MODE (FILE : in FILETYPE) return FILEMODE;
function NAME (FILE : in FILE TYPE) return STRING;
function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN(FILE : in FILE TYPE return BOOLEAN;

pragma PAGE;
-- control of default input and output files

procedure SET INPUT (FILE : in FILE TYPE);
procedure SET OUTPUT (FILE : in FILETYPE);

function STANDARD INPUT return FILETYPE;
function STANDARDOUTPUT return FILE TYPE;

function CURRENT INPUT return FILE TYPE;
function CURRENT OUTPUT return FILE TYPE;

pragma PAGE;
-- specification of line and page lengths

procedure SETLINELENGTH (FILE : in FILETYPE;
TO : in COUNT);

procedure SETLINELENGTH (TO : in COUNT);

procedure SETPAGELENGTH (FILE : in FILETYPE;
TO : in COUNT);

procedure SETPAGELENGTH (TO : in COUNT);

function LINELENGTH (FILE : in FILETYPE)
return COUNT;

function LINE LENGTH return COUNT;

funczion PAGE ET-NGTH (FILE : in F7LE TYPE)
return COUNT;

functicn PAGE LENGTH return COUNT;

pragma PAGE;
-- Column, Line, and Page Control

procedure NEW LINE (FILE : in FILE TYPE;
SPACING : in POSITIVE COUNT := 1);

procedure NEWLINE (SPACING : in POSITIVECOUNT 1);

procedure SKIP LINE (FILE : in FILETYPE;
SPACING : in POSITIVE COUNT 1);

Page F-12

User's Guide

Appendix F

procedure SKIPLINE (SPACING : in POSITIVECOUNT := 1);

function END OF LINE (FILE : in FILETYPE) return BOOLEAN;
function END OF LINE return BOOLEAN;

procedure NEW PAGE (FILE in FILETYPE);
procedure NEWPAGE

procedure SKIP PAGE (FILE : in FILETYPE);
procedure SKIPPAGE

function END OF PAGE (FILE : in FILETYPE) return BOOLEAN;
function ENDOFPAGE return BOOLEAN;

function END OF FILE (FILE : in FILETYPE) return BOOLEAN;
function END OF FILE return BOOLEAN;

procedure SETCOL (FILE : in FILE TYPE;
TO : in POSITIVECOUNT);

procedure SET_COL (TO : in POSITIVE COUNT);

procedure SETLINE (FILE : in FILE TYPE;
TO : in POSITIVE COUNT);

procedure SETL:NE (TO : in POSITIVECOUNT);

function COL (FILE : in FILE TYPE)
return POSITIVE COUNT;

function COL return POSITIVE-COUNT;

function LINE (FILE : in FILE TYPE)
return POSITIVECOUNT;

function LINE return POSITIVECOUNT;

function PAGE (FILE : in FILE TYPE)
return POSITIVE COUNT;

function PAGE return POSITIVECOUNT;

pragma PAGE;
-- Character Input-Output

procedure GET (FILE: in FILETYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE-TYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE : in FILETYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILETYPE; ITEM : in CHARACTER);
procedure PUT. (ITEM : in CHARACTER);

procedure GET LINE (FILE : in FILETYPE;

Page F-13

User's Guide
Appendix F

ITEM : out STRING;
LAST : out NATURAL);

procedure GET LINE (ITEM : out STRING;
LAST : out NATURAL);

procedure PUTLINE (FILE : in FILE TYPE;
ITEM : in STRYNG);

procedure PUTLINE (ITEM : in STRING);

pragma PAGE;
-- Generic Package for Input-output of Integer Types

generic
type NUM is range <>;

package INTEGERIO is

DEFAULT WIDTH : FIELD NUM'WIDTH;

DEFAULT-BASE : NUMBERBASE := 10;

procedure GET (FILE : in FILETYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure PUT (FILE : in FILETYPE;
ITEM in NUM;
WIDTH in FIELD := DEFAULTWIDTH;
BASE in NUMBER BASE := DEFAULTBASE);

procedure PUT (ITEM in NUM;
WIDTH in FIELD := DEFAULTWIDTH;
BASE : in NUMBER BASE := DEFAULTBASE);

procedure GET (FROM : in STRING;
ITEM : out NUTM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM in NUM;

BASE in NUMBER BASE DEFAULT BASE);

end INTEGER IO;

pragma PAGE;

Page F-14

User's Guide
Appendix F

-- Generic Packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOAT_10 is

DEFAULT FORE : FIELD := 2;

DEFAULTAFT : FIELD := NUM'DIGITS - 1;
DEFAULT-EXP : FIELD := 3;

procedure GET (FILE : in FILETYPE;
ITEM : out NUM;
WIDTH in FIELD := 0);

procedure GET (ITEM out NUM;
WIDTH : in FIELD 0);

procedure PUT (FILE : in FILETYPE;
ITEM : in NUM;
FORE : in FIELD DEFAULT FORE;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD := DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD DEFAULTFORE;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULT EXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULT EXP);

end FLOAT IO;

pragma PAGE;

Page F-15

User's Guide
Appendix F

generic
type NUM is delta w;

package FIXEDIO is

DEFAULT FORE : FIELD NUM'FORE;
DEFAULT AFT : FIELD NUM'AFT;
DEFAULTEXP : FIELD := 0;

procedure GET (FILE : in FILE TYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD 0);

procedure PUT (FILE : in FILETYPE;
ITEM : in NUM;
FORE : in FIELD :a DEFAULTFORE;
AFT : in FIELD := DEFAULTAFT;
EXP : in FIELD := DEFAULT EXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD := DEFAULTFORE;
AFT : in FIELD DEFAULTAFT;
EXP : in FIELD := DEFAULTEXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD := DEFAULT AFT;

KEXP : in FIELD := DEFAULT EXP);

end F:XED IC;

Pragma PAGE;6

Page F-16

User's Guide

Appendix F

-- Generic Package for Input-Output of Enumeration Types

geeric
type ENUM is (<>);

package ENUMERATIONIO is

DEFAULT WIDTH : FIELD 0;
DEFAULTSETTING : TYPE SET UPPERCASE;

procedure GET (FILE in FILE TYPE; ITEM : out ENUM);
procedure GET (ITEM : out ENUM);

procedure PUT (FILE : FILE TYPE;
ITEM : in ENUM;
WIDTH : in FIELD DEFAULT WIDTH;
SET in TYPESET DEFAULT SETTING);

procedure PUT (ITEM in ENUM;
WIDTH : in FIELD := DEFAULT WIDTH;
SET : in TYPESET DEFAULT SETTING);

procedure GET (FROM : in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in ENUM;
SET : in TYPESET := DEFAULTSETTING);

end ENUMERATION IO;

pragma PAGE;

-- Exceptions

STATUS ERROR : exception renames :0 EXCEPTIONS.STATUS ERRCR;
MODE ERROR : exception renames I-EXCEPT:ONS.MODE ERRCR:
NAME ERROR : exception renames :0 EXCEPT:ONS.NAME ERROR;
USE ERROR : exception renames 10-EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IOEXCEPT:ONS.lZvfC ERRCR;
END ERROR : exception renames :0-EXCEPT:ONS.END ERROR;
DATA ERROR : exception renames :0-EXCEPTIONS.DATA ERROR;
LAYOUTERROR : exception renames IO-EXCEPT:ONS.LAYCUT ERROR;

pragma page;
private

type FILE TYPE is
record

FT : INTEGER := -1;
end record;

end TEXT IC;

Page F-17

User's Guide

Appendix F

F.8.2 Package 10 EXCEPTIONS

The specification of the package IO EXCEPTIONS:

package IEXCEPTIONS is

STATUS ERROR : exception;
MODE ERROR : exception;
NAME ERROR : exception;
USE ERROR : exception;
DEVICE ERROR : exception;
END ERROR : exception;
DATA ERROR : exception;
LAYOUTERROR : exception;

end IOEXCEPTIONS;

Page F-.8

User's Guide
Appendix F

F.8.3 Package BASIC 10

The specification of package BASICI:

with 10_EXCEPTIONS;

package BASIC_I is

type count is range 0 .. integer'last;

subtype positivecount is count range 1 .. count'last;

function getinteger return string;

-- Skips any leading blanks, line terminators or page
-- terminators. Then reads a plus or a minus sign if
-- present, then reads according to the syntax of an
-- integer literal, which may be based. Stores in item
-- a string containing an optional sign and an integer
-- literal.

-- The exception DATA ERROR is raised if the sequence
-- of characters does not correspond to the syntax
-- described above.

-- The exception END ERROR is raised if the file terminator
-- is read. This means that the starting sequence of an
-- integer has not been met.

-- Note that the character terminating the operation must
-- be available for th next get operation.

function cew_real return string;

-- Correspcnds to getinteger except that it reads acccrding
-- to the syntax of a real literal, which may be base&.

function getenumeration return string;

-- Corresponds to get_integer except that it reads according
-- to the syntax of an identifier, where upper and lower
-- case letters are equivalent to a character literal
-- including the apostrophes.

Page F-19

User's Guide

Appendix F

function getitem (length : in integer) return string;

-- Reads a string from the current line and stores it in
-- item. If the remaining numoer of characters on the
-- current line is less than length then only these
-- characters are returned. The line terminator is not
-- skipped.

procedure putitem (item : in string);

-- If the length of the string is greater than the current
-- maximum line (linelength), the exception LAYOUTERROR
-- is raised.

-- If the string does not fit on the current line a line
-- terminator is output, then the item is output.

-- Line and page lengths - ARM 14.3.3.

procedure setline_length (to : in count);

procedure setpagelength (to : in count);

function line-length return count;

function page_length return count;

-- Oerations on columns, lines and paces - ARM -4.3.4.

proceiwre new line;

procedure skid line"

function end oc line return boolean;

procedure newpage;

procedure skip_page;

function endofpage return boolean;

Page F-20

User's Guide
Appendix F

function end of file return boolean;

procedure setcol (to in positivecoun:);

procedure set line (to in positive count);

function col return positive count;

function line return positive-count;

function page return positive-count;

-- Character and string procedures.
-- Corresponds to the procedures defined in ARM 14.3.6.

procedure get_character (item out character);

procedure get_string (item : out string);

procedure getline (item : out string;
last : out natural);

procedure put_characte2 (item : in character);

cedure put_strina (item : in string);

procedure put line (item : in string);

-- exceptions:

USE ERROR : exception renames 10 EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IO-EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames 10 EXCEPTIONS.END ERROR;
DATA ERROR : exception renames IO-EXCEPTIONS.DATA ERROR;
LAYOUTERROR : exception renames 1O-EXCEPTIONS.LAYOUT ERROR;

end BASIC IC;

Page F-21

User's Guide

Appendix F

F.8.4 Package LOW LEVEL 10

The specification o! LOW LEVEL IO is:

with SYSTEM;

package LOW LEVEL 10 is

subtype portaddress is System.Word;

type byte is new integer;

procedure sendcontrol(device : in port_address;
data : in System.Word);

procedure send_control(device : in port_address;
data : in byte);

procedure receivecontrol(device in port_address;
data out byte);

procedure receivecontrol(device in port_address;
data out System.Word);

private

pragma(inline(send control, receive control);

end LOWLEVEL 10;

Page F-22

User's Guide

Appendix F

F.8.5 Package TERMINAL DRIVER

The specification of package TERMINAL DRIVER:

package TERMINALDRIVER is

procedure putcharacter (ch : in character);

procedure get-character (ch : out character);

private

pragma interface (ASM86, put_character);

pragma interface (ASM86, get_character);

end TERMINALDRIVER;

Page F-23

User's Guide
Appendix F

F.8.6 Package SEQUENTIAL-1O

-- Source code for SEQUENTIALIO

pragma PAGE;

w ~ :. EXCEPTIONS;

generic

type ELEMENTTYPE is private;

package SEQUENTIAr._IO is

type FILE TYPE is limited private;

type FILEMODE is (IN-FILE, OUTFILE);

pragma PAGE;
-- File management

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE := OUT FILE;
NAME : in STRING fill

FORM : in STRING pill

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING

rrzcelure CLOSE kFILE : in out FILE TYPE);

rzedure DELETE(FLE : in out FILE TYPE);

S....re RESET (FILE : in out FILE TYPE;
MODE : in F:LE--OE);

;rzcefure RESET (FnLE :. out

function MODE (FILE in FILE TYPE) return FILE MODE;

funcion NAME (FILE in FILETYPE) return STRING;

function FORM (FILE i n FILETYPE) return STRING;

function ISOPEN(FEr : in FILE TYPE) returnEAN;

- - inut and output operations

Page F-24

User's Guide
Appendix F

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENT TYPE);

procedure WRITE (FILE : in FILETYPE;
ITEM : in ELEMENTTYPE);

function END OF FLE (FILE :in FILETYPE return BODLEAN;

pragma PAGE;
-- exceptions

STATUS ERROR : exception renames I EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames IO-EXCEPTIONS.MODE ERROR;
NAME ERROR : exception renames I EXCEPTIONS.NAME ERROR;
USE ERROR : exception renames IO-EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IO-EXCEPTIONS.DEVTCE ERROR;
END ERROR : exception renames IO-EXCEPTIONS.END ERROR;
DATAERROR : exception renames IO-EXCEPTIONS.DATA ERROR;

pragma PAGE;
private

type FILETYPE is new INTEGER;

end SEQUENTIALIC;

Page F-25

User's Guide

Appendix F

F.9 Machine Code Insertions

The reader should be familiar with the code generation strategy
and the 80x86 instruction set to fully benefit from this section.

As described in chapter 13.8 of the ARM [DoD 83] it is possible
to write procedures containing only code statements using the
predefined package MACHINE CODE. The package MACHINECODE
defines the type MACHINE INSTRUCTION which, used as a record
aggregate, defines a machine code insertion. The following
sections list the type MACHINE INSTRUCTION and types on which it
depends, give the restrictions, and show an example of how to use
the package MACHINECODE.

F.9.! Predefined Types for Machine Code Insertions

The following types are defined for use when making machine code
insertions (their type declarations are given in the following
pages):

type opcode_type
type operandtype
type registertype
type segment_register
type machine instruction

The type REGISTER TYPE defines registers and register
combinations. The double register combinations (e.g. BXSI) can
be used only as address operands (BX SI describing [BX+S!]). The
registers STi describe registers on the floating stack. (ST is
the top of the floatIng stack).

The type SEGMENT REGISTER defines the four segment regiszers that
can be used -t overwrite default segments in an address onerand.

: "ce :NSTRUT-:ON is a disc- - an: record tvce
i ev'er-- kind :f ins~ruc:icn can be described. Svmboic names

.ba ce used in :he form

name'ADDRESS

Restrictions as to symbolic names can be found in section ?.9.2.

Page F-26

User's Guide
Appendix F

type opcode_type is(
-- 8086 instructionS:

mn AAA, mnAAD, in AAM, inAAS,
mnADC, in ADD, inAND,
mn CALL, m CALLn,
inCaw, mnCLC, mn CLD i CA I,
in CMC, inCMP, inCMPS, MnCWD,
m n DAA, inDAS,
in DEC, in DIV, in_HLT,
M-IDIV, m-IMUL, inIN, inINC,
in INT, inINTO, inIRET,
mnJA, in JAE, in JB, in JBE,

inJC, m -JCXZ, inJE, mnJG,
m JGE, mnJL, in_JLE, mn JNA,

mnJNAE, inJNB, in JNBE, inJNC
in JNE, inJNG, inJNGE, in JNL,

inJNLE, inJNO, inJNP, mnJNS,
in JNZ, MnJO, in JP, inJPE,
inJPO, mnJS, inJZ, in JMP,
mnLAHY, m LDS, in LES, inLEA,
mn LOCK, m LODS,
in LOOP, mnLOOPE, mnLOOPNE, in_LOOPNZ,
mnLOOPZ, inmov, in MOVS, in MUL,
inNEG, inNOP, inNOT, mnOR,
mnOUT, inPOP, inPOPF, inPUSH,
inPUSHF,
m RCL, in RCR, inROL, inROR,
in REP, mnREPE,, m -REPNE,
inRET, inRETP, mnRETN, inRrETNP,
inSAH-F,
inSAL, in SAR, inSHL, in SHR,
mnSBB, mnSCAS,
inST , in STD, m -sT:, m -s'OS,
mnSUB, min TEST, inWA:-r, min HG
mXL^AT, rnXCR,

Page F-27

User's Guide
Appendix F

-8087/801487/80287 Floating Point Processor instructi.ons
in FABS, mnFADO, mnFADDO, inFADDP,
m FBLD, mnFBSTP, inFCHS, mn FNCLEX,
m FCOM, mnFCOMD, mnFCO.MP, MnFCOMPD,
in FCOMPP, inFDECSTP, inFD-V, i-n FDVD,
m FDIVP, mnFDIVR, mnFXVRD, m FD7VRP,

m FFREE, mnFIADD, mnFIADDD, m FICOM,
in FICOMD, mFICOMP, mnFICOMPD, mnFIDIV,
in FIDIVD, mnFIDIVR, inFIDIVRD,
mnFILD, inFILDD, inFILDL, inFIMUL,
m FIMULD, inFINCSTP, minFNINIT, in FIST,
mn FISTD, inFISTP, inFISTPD, in_FISTPL,
mnFISUB,
mn FISUED, i_FISUBR, m -FISUBRO, in FLD,
m FLDD, m_-FLDCW, inFLDENV, mnFLDLG2,
m FLDLN2, inFLDL2E, m -FLDL2T, mnFLDPI,
inFLDZ, minFLD1, inFMUL, m -FMULD,
inFMULP, inFNOP, m FPATAN, Zn FPREM,
m -FPTAN, m FRNDINT, inFRSTOR, mnFSAVE,
mn FSCALE, m FSETPM, mnFSQRT,
m FST, mnFSTD, in FSTCW,
mnFSTENV, mnFSTP, inFSTPD, inFSTSW,
mnFSTSWAX, inFSUB, inFSUBD, in FSUBP,
mnFSUBR, inFSUBRD, in_ FSUBRP, minFTST,
m FWAIT, in_FXAM, minFXCH, inFXTRACT,
inFYL2X, inFYL2XP1, inF2XM1,

-- 80186/80286/80386 instructions:
-- Notice that some immediate versions ot the 8085 instructions
-- only exist cn these targets (shifts, rotates, push, iinul, ..

minBOUND, inCLTS, inENTER, in INS,

3Pn_-LAR, in LEAVE, inLGD-T, nLIDT
min LSL m -_OUTS inPOPA, in P'USHA
inS SGDT, in_ SIDT,
m -_ARPL, inLLDT, in X SW , mn LTR,

in SLDT, inSMSW, -,S T , i VERR,
inVERW,

Page F-28

User's Guide

Appendix F

-the 80386 specific instructions:

in SETA, in_SETAE, in SETB, m -SETBE,
m SETC, m_SETE, M SETG, mnSETGE.
m SETL, in_SETLE, in SETNA, inSETNAE,
mnSETNB, inSETNBE, mn SETNC, in SETNE,
m SETNG, inSETNGE, in SETNL, inSETNLE
m -SETNO, in_SETNP, m SETNS, in SETNZ,
m -_SETO, inSETP, inSETPE, inSETPO,
inSETS, in_SETZ,

mnBSF, in_BSR,
mn BT, in_BTC, In BTR, in BTS,
mnLFS, in_LGS, in_LSS,
M _MOVZX inMOVSX,
mnMOVCR, in_MOVDB, in MCVTR,
mSHLD, M_SHRD,

-the 80387 specific instructions
mnFUCOM, mn FUCOMP, m FUCOMPP
inFPREM1, mInSIN, inFCOS, inFSINCOS

-byte/word/dword variants (to be used, when not deductible fromn
-- context

inADDCB, inADCW, inADCD,
mnADDB, mADDW, mnADDD,
inANDB, in ANDW, mnANDD,

m -BTW, InBTD,
M -BTCW, inBTCD,
in BTRW, inBTRD,
M BTSW, inBTSD,
in CBWW, mn CW4DE,
m CWDW mn CZ)Q,

inCMPB, inCMPW, inCMPD,
m _CMPSB, inCMSW, mn CX: ,
mnDECS, in DEOW, mnDED
inDIV5, inDI1VW, in-:D
inIDIVB, in_:DIVW, in_:::v-,,
m _IMtJLB, inIMU L', mI-UL2
mnINCE, in INCW, inINC-D,
in INSB, m INSW, inINSD,
mnLODSB, inLODSW, inLCDSZ,
in_ MOVE, inMOVW, inMCVD,
minMOVSB, mnMOVSW, inMCVSD,
inMOVSXB, in MOVSXW,
mnMOVZXB, mnMOVZXW,
iMULE, in MULW, MnM7JDr

in NEGB, in NEGW, i NZ3D,
in NOTB, m NOTW, mnNCT,-0
mn ORB, mnORW, in ORD,
inOUTSB, M-OUTSW, inCUTSD,

mnPOPW, inPC-PD,
inPUSHW, in:,, PS FD,

Page F-29

User's Guide
Appendix F

in RCLB, inRCLW, mnRCLD,
m RCRB, mnRCRW, mn RCRD,
m ROLB, mnROLW, m ROLD,
mnRORB, inRORW, mn RO'RD.
m SALB, mnSALW, m SALD,
m SARB, inSARW, mnSARD,
m SHLB, inSHLW, m SHLDW,
mnSHRB, inSHRW, m SHROW,
m SBBB, mnSBBW, mn SBED,
m SCASE, ZDSCASW, mnSCASD,
m -STOSB, inSTOSW, m STOSO,
inSUEB, inStJW, In SUED,
mTESTE, m_-TESTW, m -TESTD,
in XORB, inXORW, mnXORD,
inDATAB, inDATAW, inDATAD

-Special 'instructions'

in_label, in-reset);

pragina page;

Pace F-30

User's Guide

Appendix F

type operand_type is (none, -- no operands

immediate, -- 1 immediate operand
register, -- 1 register operand
address, -- i address cperand
system_address, -- 1 'address cperand
name, -- CALL name
registerimmediate, -- 2 operands: dest is

-- register, source is
-- immediate

register_register, -- 2 register operands
register_address, -- 2 operands: dest is

-- register, source is
-- address

address register, -- 2 operands: dest is
-- address, source is
-- register

register_systemaddress,-- 2 operands: dest is
-- register, source is
-- 'address

system_addressregister,-- 2 operands: dest is
-- 'address, source is
-- register

address-immediate, -- 2 operands: dest is
-- 'address, source is
-- immediate

system_addressimmediate,-- 2 operands: dest Is
-- 'address, source is
-- immediate

immediate_register, -- only allowed for
-- OUT

-- port is immediate
-- source is recister

immediataimmediate, -- cnly allowed fcr
- ENTER

register registerZimmediate, -- allowed fr U
- RD -4 - and S =M

registeraddress immediate -- allowed -zr :;: ...
recister system address immediate -- a-'wed f c _
addressregister immediate -- allowed for S*RDi47,

system address-register immediate -- allowed for SHRDimm,

type registertype is (AX, CX, DX, BX, -- word registers
SP, BP, SI, DI, --

AL, CL, DL, BL, -- byte registers
AH, CH, DH, SH, --

EAX, ECX, EDX, EBX -- dwcrd registers

Page F-31

User's Guide

Appendix F

ESP, EBP, ESI, EDI

ES, CS, SS, DS, -- selector registers
FS, GS

BX SI, BX DI, -- 8086/80186/80286
BP-SI, BP-DI, -- combinations

ST, STI, ST2, ST3, -- floating
-- stack
-- registers

ST4, ST5, ST6, ST7,

nil);

type segment_register is (ES, CS, SS, DS, FS, GS, nil);
-- segment registers
-- FS and GS are only allowed in 80386 targezs

subtype machinestring is string (l..100);

pragma page;

Page F-32

User's Guide
Appendix F

type machineinstruction (operandkind : operandtype is
record

opcode : opcodetype;

case operand_kind is
when immediate ->

immediate : integer;

when register =>
r_register : register_type;

when address =>
a_segment : registertype;
a_address_reg : register_type;
a-offset : integer;

when systemaddress =>
sa address : system.address;

when name =>
n_string : machinestring;

when registerimmediate =>
r_i_register : register_type;
r_i_ir Mediate : integer;

when registerregister =>
r_r_registerto : register_type;
r_r_registerfrom : register_type;

when registeraddress =>
r_a_register_to : registertype;
r a segment . : segmentregister;
r_a_address_reg : register_type;
r_a_offset : integer;

when address_register =>
a_r_se-ment : segment recister;
a_r_address_reg : register_type;
a r offset : integer;
a_r_register_from : registertype;

when registersystem address =>
r_saregister to : register_type;
r_saaddress : system.address

when system addressregister =>
sa_r address : system.address;
sa_r_reg_from : register_type;

Page F-33

User's Guide
Appendix F

when address immediate =>
a_isegment : segmentregister;
a i address reg : register_type;
a i offset : integer;
aji-immediate : integer;

when systemaddressimmediate =>
sa i address : system.address;
sa_i_immediate : integer;

when immediate register =>
ir_register : integer;
i_rregister : register_type;

when immediate immediate =>
i i immediatel : integer;
i_i_immediate2 : integer;

when registerregister immediate =>
r r i registerl : register_type;
r r i register2 : register_type;
r r i immediate2 : integer;

when register address immediate =>
r a i register : register_type;
r_a_i_segment : register_type;
r a i address_reg : registertype;
r a i offset : integer;
r a i immediate : integer;

when register_system addressimmediate =>
r sa_i_register : registertype;
addrlO- : system.address;
r sa i immediate : integer;

when address_registerimmediate =>
a_r_i_register : registertype;
a_r_i_segment : registertype;
a r i address_reg : registertype;
a r i offset : integer;
a r i immediate : integer;

when systemaddress registerimmediate =>
sa r i address system.address;
sa r i register register_type;
sa r i immediate : integer;

when others =>
null;

end case;
end record;

Page F-34

User's Guide

Appendix F

F.9.2 Restrictions

Only procedures, and not functions, may contain machine code
insertions. Also procedures that use machine code insertions
must be inline.

Symbolic names in the form x'ADDRESS can only be used in the
following cases:

1) x is an object of scalar type or access type declared
as an object, a formal parameter, or by static renaming.

2) x is an array with static constraints declared as an
object (not as a formal parameter or by renaming).

3) x is a record declared as an object (not a formal
parameter or by renaming).

All opcodes defined by the type OPCODEtype except the mCALL

can be used.

Two opcodes to handle labels have been defined:

m label: defines a label. The label number must be in the
range 1 <= x <= 25 and is put in the offset field
in the first operand of the MACHINEINSTRUCTION.

m reset: used to enable use of more than 25 labels. The
label number after a m RESET must be in the range
1 <= x <=25. To avoid errors you must make sure
that all used labels have been defined before a
reset, since the reset operation clears all used
labels.

All floating instructions have at most one operand which can te
any cf the following:

- a memory address
- a register or an immediate value
- an entry in the floating stack

Page F-35

User's Guide

Appendix F

F.9.3 Examples

The following section contains examples of how to use the
machine code insertions and lists the generated code.

F.9.3.1 Example Using Labels

The following assembler code can be described by machine code
insertions as shown:

MOV AX,7
MOV CX,4
CMP AX,CX
JG 1
JE 2
MOV CX,AX

1: ADD AX,CX
2: MOV SS: [BP+DI], AX

with MACHINECODE; use MACHINE CODE;
package example_MC is

procedure test labels;
pragma inline (test labels);

end exampleMC;

package body exampleMC is

procedure test-labels is

beginis

MACHINE :NSTRUCTON'(register immediate, mMOV, AX, 7);
MACHINE- :NSTRUCTI:N'(register immediate, mMOV, CX, 4);
MACHINE -NSTRUCTION'(register-register, mCMP AX, CX);
XACHINE-INSTRUCTIONW(immediate, mJG, 1);
MACHZNE INSTRUCTION'(immediate, mJE, 2);
MACHINE .NSTRUCTION'(register_register, mMOV, CX, AX);
MACHINE :NSTRUCTICN'(immediate, mlabel, 1);
MACHINE -NSTRUCTION'(registerregister, mADD, AX, CX);
MACHINE INSTRUCTION'(immediate, m-label, 2);
MACHINE-INSTRUCTION'(address_register,mMOV,SS,BPDI,OAX);

end test labels;

end example MC;

Page F-36

User's Guide

Appendix F

F.10 Package Tasktvpes

The TaskTypes packages defines the TaskControlBlock type. This
data structure could be useful in debegging a tasking program.
The following package Tasktypes is for the 80x86 Real Address
Mode and 80286 Protected Mode systems:

with System;

package TaskTypes is

subtype Offset is System.Word;
subtype Blockld is System.Word;

type TaskEntry is new System.Word;
type Entrylndex is new System.Word;
type Alternativeld is new System.Word;
type Ticks is new System.LongWord;

type TaskState is (Initial,
Engaged,
Running,
Delayed,

EntryCallingTimed,
EntryCallingUnconditional,
SelectingTimed,
SelectingTerminable,
Accepting,
Synchronizing,
Completed,
Terminated);

type TaskTypeDescriptor is
record b

priority : System.Priority;
entry count : System.Word;
block id : Blockld;
first own address : System.Address;
module number : System.Word;
entry number : System.Wcrd;
code address : System.Address;
stack-size : System.LongWord:
stacksegment size: System.Word;

end record;

type NPXSaveArea is array(l..48) of System.Word;

pragma page;
type TaskControl lock is

record
sem : System.Semaphore;

Page F-37

User's Guide

Appendix F

-- Delay queue handling

dnext :System.TaskValue
dprev :System.TaskValue
ddelay : Ticks

-- Saved registers

SS : System.Word
SP : System.Word

-- Ready queue handling

next : System.TaskValue

-- Semaphore handling

semnext : System.TaskValue

-- Priority fields

priority : System.Priority;
savedpriority : System.Priority;

time slice : Ticks;

stack start : Offset;
Ftack-end : Offset;

-- State fields

state : TaskState;
is abnormal : Boolean;
is activatad : Boolean;
failure : Boolean;

-- Activation handling fields

activatcr :System.TaskValue;
at chain : System.TaskValse"
nex. chain : System.TaskValue;
no not acm : System.Word;
act-block : Blockld;

-- Accept queue fields

partner :System.TaskValue;
nextpartner : System.TaskValue;

Page F-38

User's Guide

Appendix F

-Entry queue fields

next-caller System.TaskValue;

-Rendezvous fields

called-task :System.TaskValue;
task_entry :TaskEntry;
entry_index : EntryIndex;
entry_assoc :System.Address;
call params :System.Address;
alt id :Alternativeld;
excp_id : System.Exceptionld;

-Dependency fields

parent_task :System.TaskValue;
parent block :Blockld;
child-task :Systern.TaskValue;
next child :System.TaskValue;
first child : System.TaskValue;
prey Ehild :System.TaskValue;
child act :System.Word;
block act- Systern.Word;
terminated-task: System.TaskValue;

-Abortion handling fields

busy :System.Word;

-Auxiliary fields

ttd :,TaskType~escriptcr;
segmervn size :-Systern.Worl;

Run~-Time System fields

AM Offset;
wilecoicn Sysmem.Address;

-NX save area
NPXSave :NPXSaveArea;

en~d record;

end TaskTypes;

Page F-39

User's Guide
Appendix F

The following package Tasktypes is for the 80386 Protected Mode
syste:-:

with System;

package TaskTypes is

subtype Offset is System.UnsignedDWord;
subtype Blockld is System.UnsignedDWord;

type TaskEntry is new System.UnsignedDWord;
type EntryIndex is new System.UnsignedDWord;
type Alternativeld is new System.UnsignedDWord;
type Ticks is new Systern.UnsignedDWord;
type Boo, is new Boolean;
for Bool'size use 8;
type Ulntg is new System.UnsignedDWord;

type TaskState is (Initial,
Engaged,
Running,
Delayed,
EntryCal.lingTimed,
EntryCallingUnconditional,
SelectingTimed,
SelectingTerminable,
Accepting,
Synchronizing,
Completed,
Terminated);

,type TaskTypeDescr-iptor 4s
record

priorityv System.P=4orftv;
entry_count :UInt-,
block id B lockid;
first-own-accz-ess : System.AddAress;
module-number :Ulntg;,
entry number : Uzlntg;
code address :Svstlem.Address;
stack size : System.QWord;
stack-segment-size: Ulntg;

end record;

tyce NPXSaveArea is array(l. .48) of System.Word;

pragma page;
type TaskCorntrol~lock is

record
sern System.Semaphore;

Page F-40

User's Guide

Appendix F

-Delay queue handling

dnext :System.TaskValue
dprev :System.TaskValue
ddelay :Ticks

-Saved registers

Ss: System.Word
SP :Offset;

-Ready queue handling

next : Systezn.TaskValue;

-Semaphore handling

semnext :System.TaskValue

-Priority fields

priority :System.Priority;
saved_priority : System.Priority;

time-slice :Ticks;

stack start :Offset;
stack-end :Offset;

-State fields

state :TaskState;
is abnormial :Bool;
is activated :,Bccl;
failure :Bedl;

-Activation handling fields

activator System.TaskValue;
act chain System.TaskValue;
next -chain System.TaskValue;
no not act Svstem.Word;
act block Blockld;

-Accept queue fields

partner :System.TaskValue;

next partner :System.TaskValue;

Page F-41

User's Guide

Appendix F

-- Entry queue fields

next-caller System.TaskValue;

-Rendezvous fields

called -task : System.TaskValue;
task-entr-y : TaskEntry;
entry_index :Entryindex;
entr-y-assoc :Systern.Address;
call params :System.Address;
alt - d :Alternativeld;
excp_id : System.Exceptionld;

-Dependency fields

parent -task : System.TaskValue;
parent block :B2.ockld;
child tEask : System.TaskValue;
next_'Ehild : System. TaskValue;
first child : System.TaskValue;
prey 'child : System. TaskValue;
child -act : System.Word;
block -act : System.Word;
terminated-task: System.TaskValue;

-Abortion handling fields

busy :System.Word;

-- Auxiliary ff.elds

t",td :TaskType~escriptor;
segment-size : System.Word;

-- un-Tirme System~ fiel-ds

AC: Offset;
System-Atress;

-- NPX sav-e area
NPXSave :NPXSaveArea;

end record;

end TaskTypes;

Page F-42

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,

such as the maximum length of an input line and invalid file names. A

test that makes use of such values is identified by the extension .TST

in its file name. Actual values to be substituted are represented by

names that begin with a dollar sign. A value must be substituted for

each of these names before the test is run. The values used for this

validation are given below.

$ACC_SIZE 32

An integer literal whose value

is the number of bits sufficient

to hold any value of an access

type.

$BIG_IDI 1..125 -> 'A', 126-> 'I'
Identifier the size of the

maximum input line length with

varying last character.

$BIG_ID2 1.,125 -> 'A', 126 -> '2'
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 1..63 -> 'A', 64=> '3',
Identifier the size of the 65..126 => 'A'

maximum input line length with

varying middle character.

$BIGID4 1..63 > 'A', 64 -> '4',
Identifier the size of the 65..126 => 'A'

maximum input line length with
varying middle character.

$BIGINTLIT 0..123 -> 0, 124..126 -> 298

An integer literal of value 298
with enough leading zeroes so

that it is the size of the
maximum line length.

$BIG_REALLIT 0..120 -> 0, 121..126 -> 69.OEI
A universal real literal of

value 690.0 with enough leading

zeroes to be the size of the

C-I

maximum line length.

$BIGSTRINGI 0..63 -> 'A'

A string literal which when
catenated with BIG STRING2
yields the image of BIGIDi.

$BIGSTRING2 0..62 -> 'A', 63 -> 'I'
A string literal which when
catenated to the end of
BIG STRINGI yields the image of
BIGIDI.

$BLANKS 0..106 -> '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 32767
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 1_048_576
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 16
An integer literal whose value
is SYSTEM.STORAGEUNIT.

$DEFAULT SYS NAME IAPX186
The value of the constant
SYSTEM. SYSTEM NA.ME.

$DELTA_DOG 2I.0#E-31
A real literal whose value is
SYSTEM. FIN;E DELTA.

$FIELD_LAST 35
A universal integer
literal whose value is
TEXT IO.FIELD'LAST.

$FIXEDNAME NOSUCHTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOATNAME NOSUCHTYPE
The name of a predefined
floating-point type other than

C-2

FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATERTHANDURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER_TI-HAN DURATION BASE LAST 200000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 31
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAMEl ILLEGAL!@#$%-
An external file name which
contains invalid characters.

$ILLEGALEXTERNAL FILENAME2 ILLEGAL&() +-
An external file name which
is too long.

$INTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 32767
A universal integer literal
whose value is INTEGER'LST.

$INTEGERLAST _ PLUS 1 32 768
A universal integer literal
whose value is iNTEGER'Lj.ST + !.

$LESS_THAN_DURATION -i00000.0
A universal real literal that
lies between DUR.TION' ASE' FIRST
and DURATIOnS'FIRST or any value
in the range of DURATION.

$LESS_THAN_DURATION BASEFIRST -200000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOWPRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

C-3

mwm|||I

$MANTISSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAXIN LEN 126
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINT_PLUS_1 2_147_483_648
A universal integer literal
whose value is SYSTEM.MAXINT+l.

$MAXLENINTBASEDLITERAL l..2 -> '2:', 3..123 -> '0',
A universal integer based 124..126 -> '11:'
literal whose value is 2-11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAX_LENREALBASEDLITERAL l..3 -> '16:', 4..122 -> '0',
A universal real based literal 123..126 -> 'F.E:'
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

$MAXSTRINGLITERAL 1 -> ..., 2..125 => 'A',
A string literal of size 126 =>
MAX IN LEN, including the quote
characters.

$MININT -2147483648

A universal integer literal
whose value is SYSTEM.MIN INT.

$MINTASKSIZE 16
An integer literal whose value
is the number of bits required
rn hold a task obiect which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOSUCHTYPE

C-4

A name of a predefined numeric
type other than FLOAT, INTEGER,

SHORTFLOAT, SHORT INTEGER,
LONGFLOAT, or LONGINTEGER.

$NAME_LIST IAPX186
A list of enumeration literals
in the type SYSTEMI.NAME,
separated by commas.

$NEGBASEDINT 16#FFFFFFFF#
A based integer literal whose

highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NEWMEMSIZE 1_048_576
An integer literal whose value
is a permitted argument for
pragma memory size, other than
$DEFAULTMEMSIZE. If there is

no other value, then use

$DEFAULTMEMSIZE.

$NEWSTORUNIT 16
An integer literal whose value

is a permitted argument for
pragma storage unit, other than

$DEFAULTSTOR UNIT. If there is

no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEWSYSNPME IAPX186
A value of the type SYSTEM.NAME,
other than $DEFAULTSYS_. .! ,AME. Tf

there is onl'y one value of that

type, then use that value.

$TASK_SIZE 16
An integer literal whose value
is the number of bits required

to hold a task object which has
a single entry with one inout
parameter.

$TICK 0.000_000_125
A real literal whose value is
SYSTEM.TICK.

C-5

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 43 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the

form AI-ddddd is to an Ada Commentary.

A39005G

This test unreasonably expects a component clause to pack an array

component into a minimum size (line 30).

B97102E
This test contains an unintended illegality: a select statement

contains a null statement at the place of a selective wait alternative

(line 31).

BC3009B
This test wrongly expects that circular instantiations will be detected

in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality
need not be detected until exec-tion is attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater
than 10 although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A. .D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived

type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionllv, they use the 'SIZE length clause

and attribute, whose interpretation is considered nroblematic by the WG9

ARG.

CD2A81G, CD2A3G, CD_2S4M & N, & CDS0110

These tests assume that dependent tasks will terminate while the main
program executes a loop that simply tests for task termination; this is

not the case, and the main program may loop indefinitely (lines 74, 85,

86 & 96, 86 & 96, and 58, resp.).

CD2Bl5C & CD7205C

These tests expect that a 'STORAGESIZE length clause provides precise
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2DllB
This test gives a SMALL representation clause for a derived fixed-point

D-1

type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values
of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests as being inappropriate for
validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task's activation as though it were like
the specification of storage for a collection.

CE21071
This test requires that objects of two similar scalar types be
distinguished when read from a file--DATAERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted;
thus, this test objective is not considered valid. (line 90)

CE3!IIC
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to END OF LINE & ENDOFPAGE that have
no parameter: these calls were intended to specify a file, not to refer
to STANDARDINPUT (lines 103, 107, 118, 132, & 136).

CE3411B
This test requires that a text file's column number be set to COUNT'LAST
in order to check that LAYOUTERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

D-2

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204

will appear at the top of the listing page due to a pragma PAGE in line

203; but line 203 contains text that follows the pragma, and it is this

that must appear at the top of the page.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY

DDC-I, Inc

Compiler: DACS-80186 Version 4.3

ACVC Version: 1.10

OPTION EFFECT

/CHECK Generates run-time constraint checks.
/NOCHECK

/CONFIGURATIONFILE Specifies the file used by the compiler.

/DEBUG Include the symbolic debugging in the program
/NODEBUG library.

/EXCEPTIONTABLES Include/exclude exception handler tables from
/NOEXCEPTIONTABLES the generated code.

/LIBRARY Specify program library used.

/LIST Write a source listing on the list file.
/NOLIST

/OPTIMIZE Specify compiler optimization
/NOOPTIMIZE

/PROGRESS Display compiler progress
/NOPROGRESS

/SAVE SOURCE Copies source to program library
/NOSAVESOURCE

/XREF Creates a cross reference listing

/NOXREF

E-1

